	JABNational 5 ChemistryJAB	noi	Tra	ffic L	
H	chem Unit 3.3 Fertilisers chem	Lesson	Red	Amber	Green
31 32	 Growing plants require nutrients, including compounds containing nitrogen, phosphorus or potassium fertilisers are substances which restore to the soil elements essential for healthy plant growth 		8		©
33	 Ammonia and nitric acid are important compounds used to produce soluble, nitrogen-containing salts that can be used as fertilisers. fertilisers must be soluble if they are to be absorbed by plants through their roots 		\odot	:	0
34	 Ammonia is a pungent, clear, colourless gas ammonia dissolves in water to produce an alkaline solution ammonium hydroxide solution is formed although the balance is more molecule of ammonia than ions of ammonium and hydroxide ammonia + water → ammonium ion + hydroxide ion NH₃(aq) + H₂O(l) → NH₄+(aq) + OH⁻(aq) 		$\overline{\ensuremath{\mathfrak{O}}}$:	:
35	Ammonia solutions react with acids to form soluble salts ammonia solution + acid \longrightarrow ammonium salt + waterammonia solution + hydrochloric acid \longrightarrow ammonium chloride + water $NH_4OH_{(aq)}$ + $HCl_{(aq)}$ \longrightarrow $NH_4Cl_{(aq)}$ + $H_2O_{(l)}$		$\overline{\mbox{\scriptsize ($)}}$:	0
36	The Haber Process is the industrial process where ammonia is made for production of fertilisers $\begin{array}{ccc} N_{2(g)} & + & 3H_{2(g)} & \xrightarrow{\text{iron}} & 2NH_{3(g)} \\ Nitrogen & + & Hydrogen & \longrightarrow & Ammonia \end{array}$		3	:	٢
37	 At low temperatures the forward reaction is too slow to be economical if the temperature is increased, the rate of reaction increases however as the temperature increases, the backward reaction becomes increases 100% ammonia is never produced as the rate of breakdown of ammonia eventually equals the rate of formation of ammonia an iron catalyst is used to increase reaction rate 		8	:	0
38 39	The Ostwald process uses ammonia, oxygen and water to produce nitric acid. • ammonia is the starting material for the commercial production of nitric acid. • a platinum catalyst is used in this process. $4NH_3 + 7O_2 \xrightarrow[catalyst]{platinum}} 4NO_2 + 6H_2O$ ammonia + oxygen • nitrogen dioxide + water water Nitric acid		\odot	:	:

	1†5 : Lights	Past Paper Question Bank									JABchem					
in di fito	LIGHTS		Unit 3.3 Fertilisers													
	<u>Original</u>	New	Nat5	Nat5	Nat5	Nat5	Nat5	Nat5	Nat5	Nat5						
Outcome	<u>Specimen</u> <u>Paper</u>	<u>Specimen</u> <u>Paper</u>	<u>2014</u>	<u>2015</u>	2016	<u>2017</u>	2018	2019	2020	2021						
31 32						mc17	mc20									
33					L6a(ii)											
34								L3b								
35																
36		L12b(i)	L7a(i)	L5a	L1c(ii)	mc18										
37	L11b	L12b(ii)														
38		1120	L7b(i)				mc21									
39							L10c									

Nat5	Answer	% Correct	Reasoning
2017			🗹 A Oxygen is not an essential element for healthy plant growth
MC	Λ	70	B Nitrogen in an essential element for plants and found in fertilisers
17	A	10	EC Potassium in an essential element for plants and found in fertilisers
1/			🗷 D Phosphorus in an essential element for plants and found in fertilisers
2017			🗷 A Nitric acid is made by the Ostwald Process
MC	D	05	☑B Ammonium is made by the Haber Process
18	D	20	🗷 C Alkenes can be made by cracking alkanes
10			🗷 D Esters are made by the condensation of alcohols and carboxylic acids
2018			🗷 A Ammonium chloride contains the element nitrogen and is soluble
MC	C		🗷 B Ammonium phosphate contains elements nitrogen & phosphorus and is soluble
20	C	-	☑C sodium chloride does not contain nitrogen, phosphorus or potassium
20			🗷D Sodium phosphate contains the element phosphorus and is soluble
2018			🗷 A Nickel is the catalyst used in the production of margarine from vegetable oil
MC	C		🗷 B Platinum is the catalyst in the Ostwald Process where nitric acid is produced
21	C	-	$oxtimes {C}$ iron is the catalyst in the Haber Process where ammonia is produced
21			🗷 D Rhodium is a transition metal used in a catalytic converter in a car

Nat5	Answer	Reasoning										
2014												
7 a(i)	Haber Process	Nitrogen + Hydrogen ^{iron catalyst} Ammonia										
2014		Nitric acid is made by dissolving nitrogen dioxide in water to form										
7b(ii)	Water or H ₂ O	nitric acid. Some nitrogen monoxide is also formed during the reaction which is recycled back into the process.										
2015	Tana	Iron is the catalyst in the Haber Process where nitrogen and hydrogen										
5α	Iron	react to become ammonia NH3.										
2016		Nitrogen + Hydrogen ^{iron catalyst} Ammonia										
1c(ii)	Haber Process	Nitrogen + Hydrogen ^{Iron catalyst} > Ammonia										
2016	Ammonium	Fertilisers contain soluble compounds of one or more of the following elements										
6a (ii)	contains nitrogen	Nitrogen Phosphorus Potassium										
2018 10c	Ostwald Process	ammonia + oxygen $\xrightarrow{\text{platinum}}$ nitrogen monoxide + water $4NH_3 + 5O_2 \longrightarrow 4NO + 6H_2O$ $\downarrow \text{oxygen}$										
		NO ₂ water Nitric Acid										
²⁰¹⁹ 3b	Blue or purple	Ammonia NH ₃ gas dissolves in water to form alkaline ammonium hydroxide solution. Alkali on the damp/moist pH paper will turn blue/purple. NH ₃ (g) + H ₂ O(1) → NH ₄ ⁺ (aq) + OH ⁻ (aq) ammonia water ammonium ion hydroxide ion										

Na Traffic			Past Paper Question Bank Unit 3.3 Fertilisers											JABchem				
Outcome	<u>Int2</u> 2000			<u>Int2</u> 2003			<u>Int2</u> 2006					<u>Int2</u> 2011	<u>Int2</u> 2012	<u>Int2</u> 2013	<u>Int2</u> 2014	<u>Int2</u> 2015		
31 32	L4b				L6c			mc23							mc24	mc28		
33																		
34		mc18	mc19	mc16	mc26 L6b						mc18							
35																		
36																		
37																		
38 39																		

Int2	Answer	% Correct	Reasoning									
2001 ^{MC} 18	D	66	Ammonia is an alkali: Acidic Neutral Alkaline pH < 7 pH=7 pH>7									
2002 "c 19	D	67	mmonia dissolves in water to form the weak alkali ammonium hydroxide \therefore pH >7									
2003 ^{MC} 16	A	79	☑A ammonia dissolves in water to form the weak alkali ammonium hydroxide (pH>7) ☑B non-metal oxides e.g. carbon dioxide dissolve in water to form an acid (pH<7) ☑C non-metal oxides e.g. sulphur dioxide dissolve in water to form an acid (pH<7) ☑D sodium chloride dissolves in water to give a neutral solution (pH=7)									
2004 ^{MC} 26	A	38	IA Nitrogen dioxide is an acidic oxide so reacts with an alkaline solution IB Ammonia forms an alkali in water so does not react with an alkaline solution IC Oxygen is neutral so does not react with and alkaline solution ID Argon is neutral in water so does not react with an alkaline solution									
2007 "c 23	С	71	 A Can be used as a fertiliser: soluble compound containing nitrogen B Can be used as a fertiliser: soluble compound containing potassium + nitrogen C Cannot be a fertiliser as it does not contain nitrogen, potassium or phosphorus C Can be used as a fertiliser: soluble compound containing potassium 									
2010 "c 18	A	74	 ☑A Ammonia dissolves in water to form ammonium hydroxide ∴ alkaline pH>7 ☑B Carbon dioxide dissolves in water to form carbonic acid ∴ acidic pH<7 ☑C Sulphur Dioxide dissolves in water to form sulphurous acid ∴ acidic pH<7 ☑D Sodium chloride dissolves in water to form a neutral solution ∴ pH=7 									
2014 "c 24	D	57	A sodium nitrate is suitable as a fertiliser as it is soluble and contains nitrogen B ammonium nitrate is suitable as a fertiliser as it is soluble and contains nitrogen C ammonium sulphate is suitable as a fertiliser as it is soluble and contains nitrogen D sodium sulphate is not a fertiliser as it has no nitrogen, phosphorus or potassium									
2015 "c 28	D	73	⊠A ammonium nitrate NH4NO3 contains the element nitrogen ⊠B ammonium sulphate (NH4)2SO4 contains the element nitrogen ⊠C potassium nitrate KNO3 contains the element nitrogen ☑D potassium sulphate K2SO4 cannot be used as a fertiliser as it lacks nitrogen									

Int2	Answer	Reasoning							
2000		Fertilisers are soluble compounds containing the following elements:							
4b	Fertilisers	Nitrogen Phosphorus Potassium							
2004		Ammonia gas dissolves in the water on damp pH paper and turns it blue.							
6b	Turns blue	Ammonia dissolves in water to form ammonium hydroxide							
2004		Fertilisers are soluble compounds containing the elements:							
6c	Fertiliser	Nitrogen Phosphorus Potassium							

Na Traffic				Pas		•	Que 3 Fe						J	AB	she	m
Outcome	-	<u>2001</u>	2002	2003			2006				2010	<u>2011</u>				
Curtonio	<u>Credit</u>	<u>Credit</u>	<u>Credit</u>	<u>Credit</u>	<u>Credit</u>	<u>Credit</u>	<u>Credit</u>	<u>Credit</u>	<u>Credit</u>	<u>Credit</u>	<u>Credit</u>	<u>Credit</u>	<u>Credit</u>	<u>Credit</u>		
31 32		13a(ii)												11a(ii)		
33																
34					18b											
35			18c													
36	17a	16a							18c					11b		
37	17b		18d(ii)										12c			
38 39						15b(i) 15b(ii)				14a(i) 14a(ii) 14a(iii)		19b(i) 19b(ii)				

SG Credit	Answer	Reasoning							
2000C	Haber Process	Nitrogen + Hydrogen iron ▶ Ammonia							
17a									
2000 <i>C</i>	Ammonia breaks down	The Haber Process does not give 100% ammonia as it starts to breaks							
17b	or yield decreases	down as fast as it is produced. The higher the temperature the less ammonia is produced.							
2001 <i>C</i>									
13a(ii)	ammonium phosphate	Data booklet p8 gives names of NH4 ⁺ and PO4 ³⁻ ions							
2001 <i>C</i>	_	iron							
16a	Iron	Nitrogen + Hydrogen — Ammonia							
2002C		Ammonia forms ammonium hydroxide in water and is neutralised by phosphoric acid:							
18c	ammonium phosphate	ammonium phosphoric ammonium + water hydroxide acid phosphate + water							
2002 <i>C</i>	Ammonia breaks down	N₂ + 3H₂ → 2NH₃ reaction never reaches 100% NH₃ as the							
18d(ii)	before reaching 100% NH3	NH_3 breaks back down to the reactants.							
2004C	AL 7	Ammonium hydroxide solution produced so an alkaline pH (above 7) is							
18b	Above 7	formed in the water							

2005 <i>C</i> 15b(i)	Ostwald Process	$NH_3 + O_2 \xrightarrow{Pt} NO_2 + H_2O$ NO ₂ gas dissolves in water to form nitric acid HNO ₃										
2005C	The reaction is	The reaction in the Ostwald Process gives out enough heat energy to										
15b(ii)	exothermic or gives out heat	maintain the high temperature once the reaction is hot enough to get started.										
2008 <i>C</i>	ammonia NIJ	N2(g) + 3H2(g) iron catalyst ≥ 2NH3(g)										
18c	ammonia NH₃	nitrogen hydrogen ammonia										
2009C	Ostwald	Ammonia + Oxygen 🚽 platinum → Nitrogen Dioxide + Water										
14a(i)	Ostwald	Nitrogen Dioxide dissolves in Water to make Nitric Acid										
2009C	Exothermic Reaction	The Ostwald process is exothermic and the heat energy released during										
14a(ii)	Or heat given off	the reaction is enough to keep the reaction hot enough to proceed, as long as there is enough reactants to continue reaction.										
2009C												
14a(iii)	water	NO_2 dissolves in water to form nitric acid (air must be present)										
2011C	platinum	$NH_3 + O_2 \xrightarrow{Pt} NO_2 + H_2O$										
19b(i)	platinum	catalyst										
2011 <i>C</i>	Reaction is exothermic	Ostwald Process is exothermic and gives out heat. Once reaction starts, the heat										
19b(ii)		given off during the reaction is enough to heat the reactions from that point onwards.										
2012C	Answer to include:	Reactions can be faster at higher temperatures and can produce more										
12c		product in a shorter time.										
2013C		 Fertilisers are soluble compounds 										
11a(ii)	Restore essential elements to soil	• containing at least one element from potassium, phosphorus or nitrogen										
110(11)		added to soil to restore the essential element compounds to the soil to aid growth of plants.										
2013C	Iron	Nitracan I Ludracan iron Ammania										
11b	TLOU	Nitrogen + Hydrogen — Ammonia										

Na Traffic				Pas	st Pa Unit	•	Que 3 Fe						J	ABC	right	m
Outcome	2000 General		2002 General		2004	2005		2007	2008	2009	2010 General	2011 General	2012 General	2013 General		
31 32		14b	17c			19c(i)	12b(i)			16a(ii)	16a 16b					
33			17b				12b(ii)									
34	21b					19b				16b				17a		
35																
36			15b										11a			
37																
38 39		14a(i) 14a(ii)												17b		

SG General	Answer	Reasoning									
2000 <i>G</i>	damp pH paper	$NH_3 + H_2O \longrightarrow NH_4^+ + OH^-$									
21b	turns blue	ammonia water ammonium hydroxide									
2001 <i>G</i>											
14a(i)	Ostwald Process	Ammonia + Oxygen <u></u> Nitrogen Dioxide + Water									
2001 <i>G</i>		Nitrogen Dioxide dissolves in Water to make Nitric Acid									
14a(ii)	water	initiogen Dioxide dissolves in water to make initi' Acid									
2001 <i>G</i>	6	Ammonium Nitrate (NH4NO3) is a soluble compound containing nitrogen									
14b	fertiliser	and can be used as a fertiliser.									
2002 <i>G</i>		Nitrogen + Hydrogen ^{iron catalyst} Ammonia									
15b	Haber Process	Nitrogen + Hydrogen ^{Iron catalyst} Ammonia									

2002 <i>G</i>	fertilisers must be	
17b	soluble	Fertilisers are soluble compounds containing one or more of the
2002 <i>G</i>		elements: Nitrogen Phosphorus Potassium
17c	potassium	Nitrogen Phosphorus Potassium
2005 <i>G</i>	turns moist	$NH_3 + H_2O \longrightarrow NH_4^+ + OH^-$
19b	pH paper blue	ammonia ammonium hydroxide (alkali)
2005 <i>G</i>	nitrogen	3 essential elements for plants growth are Potassium, Nitrogen and Phosphorus
19 c(i)		
2006 <i>G</i>	potassium or	Fertilisers are soluble compounds which contain at least one of:
12b(i)	phosphorus	Nitrogen, Potassium and/or Phosphorus
2006 <i>G</i>	solubility	All nitrates are soluble and fertilisers must be soluble
12b(ii)		
2009 <i>G</i>	Potassium K or	3 essential elements for plant growth are:
16a(ii)	phosphorus P	Potassium, Phosphorus and Nitrogen
2009 <i>G</i>		ammonium + calcium + water + ammonia nitrate + hydroxide + itrate
16b	Ammonia or NH3	nitrate hydroxide nitrate $2NH_4NO_3 + Ca(OH)_2 \rightarrow Ca(NO_3)_2 + 2H_2O + 2NH_3$
2010G	potassium	Fertilisers are soluble compounds containing the elements:
16a	or phosphorus	Nitrogen Phosphorus Potassium
2010G	Must be soluble in	A fertiliser is a soluble compound with one or more of the following
16b	water	elements: nitrogen, potassium and phosphorus
2012 <i>G</i>	Haber Process	Nitrogen + Hydrogen 🕂 Ammonia
11a		N_2 + $3H_2$ $\xrightarrow{\text{Fe catalyst}}$ $2NH_3$
2013G	Blue/purple	Ammonia gas is given off when ammonium salts are heated with strong alkalis e.g. calcium
17a		hydroxide. Ammonia dissolves in water to form ammonium hydroxide which turns pH paper blue/purple.
²⁰¹³⁶ 17b	Ostwald Process	$NH_3 + O_2 \xrightarrow{Pt} NO_2 + H_2O$ NO ₂ dissolves in water to form nitric acid